1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);
2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);
3.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题;
4.会利用导数解决某些简单的实际问题.
1.函数f(x)在区间(a,b)上递增,则f′(x)≥0,“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.
2.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.
3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.
4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.
【简单学习网高考】 精品试学课 / 名师直播 / 优惠券 免费领取
注册