网校快报移动版
快捷导航 网校快报移动版

初一数学知识点总结

简单学习网简单学习网

简单学习网初一全科在线辅导,互动答疑,800讲免费课程!

免费试听

  在初中的时候,我们的数学算是真正进入了更深入的学习时期,虽说初中学的数学大部分还是以基础为主,但也能看到其难度正在逐渐上升。因此,小微也为各位整理了初一数学知识点总结,期望能帮到各位。

  第一章 有理数

  (一)正负数

  1.正数:大于0的数。2.负数:小于0的数。 3.正数大于0,负数小于0,正数大于负数。

  注意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数;

  (二)有理数

  1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。能够写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

  有理数的分类: ① ②

  (三)数轴

  1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

  2.数轴的三要素:原点、正方向、单位长度。

  3.相反数:仅有符号不同的两个数叫做互为相反数。0的相反数还是0。

  相反数的和为0 a+b=0 a、b互为相反数.

  4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

  绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2) 绝对值可表示为: 或 ;

  (3) ; ;

  等于本身的数汇总:

  相反数等于本身的数:0

  倒数等于本身的数:1,-1

  绝对值等于本身的数:正数和0

  平方等于本身的数:0,1

  立方等于本身的数:0,1,-1.

  (四)有理数的加减法

  1.先定符号,再算绝对值。

  2.加法运算法则:同号相加,到同样符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的.绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

  3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

  4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  5. a?b = a +(?b) 减去一个数,等于加这个数的相反数。

  (五)有理数乘法(先定积的符号,再定积的大小)

  1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  2.乘积是1的两个数互为倒数。

  3.乘法交换律:ab= b a

  4.乘法结合律:(ab)c = a (b c)

  5.乘法分配律:a(b +c)= a b+ ac

  (六)有理数除法

  1.先将除法化成乘法,然后定符号,最后求结果。

  2.除以一个不等于0的数,等于乘这个数的倒数。

  3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

  (七)乘方

  1.求n个同样因数的积的运算,叫做乘方。写作an 。(乘方的结果叫幂,a叫底数,n叫指数)

  2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

  3.同底数幂相乘,底不变,指数相加。

  4.同底数幂相除,底不变,指数相减。

  5据规律 底数的小数点移动一位,平方数的小数点移动二位.

  (八)有理数的加减乘除混合运算法则

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  (九)科学记数法、近似数、有效数字。

  第二章 整式

  (一)整式

  1.整式:单项式和多项式的统称叫整式。

  2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

  3.系数;一个单项式中,数字因数叫做这个单项式的系数。

  4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

  5.多项式:几个单项式的和叫做多项式。

  6.项:组成多项式的每个单项式叫做多项式的项。

  7.常数项:不含字母的项叫做常数项。

  8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

  9.同类项:多项式中,所含字母同样,并且同样字母的指数也同样的项叫做同类项。

  10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  (二)整式加减

  整式加减运算时,假如遇到括号先去括号,再合并同类项。

  1.去括号:一般地,几个整式相加减,假如有括号就先去括号,然后再合并同类项。

#p#分页标题#e#

  假如括号外的因数是正数,去括号后原括号内各项的符号与原来的符号同样。假如括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

  第三章 一元一次方程

  分析实际问题中的数量关系,借助其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  一、方程:

  先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。

  (一)一元一次方程。

  1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这么的方程叫做一元一次方程。

  2.解:求出的方程中未知数的值叫做方程的解。

  (二)等式的性质

  1.等式两边加(或减)同一个数(或式子),结果仍相等。

  假如a= b,那样a± c= b± c

  2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  假如a= b,那样a c= b c;

  假如a= b,(c?0),那样a ∕c = b ∕ c。

  (三)解方程的步骤

  解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。

  1.去分母:把系数化成整数。

  2.去括号

  3.移项:把等式一边的某项变号后移到另一边。

  4.合并同类项

  5.系数化为1

  列方程解应用题的常用公式:

  (1)行程问题: 路程=速度·时间 ;

  (2)工程问题:工作量=工作效率·工作时间 ;

  工程问题常用等量关系: 先做的+后做的=完成量w w w .x k b 1.c o m

  (3)顺水逆水问题:

  顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

  顺水逆水问题常用等量关系: 顺水路程=逆水路程

  (4)商品利润问题: 售价=定价 , ;

  利润问题常用等量关系: 售价-进价=利润

  (5)配套问题:(6)分配问题

  第四章 图形认识初步

  一、图形认识初步

  1.几何图形:把从实物中抽象出来的各种图形的统称。

  2.平面图形:有些几何图形的各部分都在同一平面内,这么的图形是平面图形。

  3.立体图形:有些几何图形的各部分不都在同一平面内,这么的图形是立体图形。

  4.展开图:有些立体图形是由 一部分平面图形围成的,将它们的表面适当剪开,能够展开成平面图形,这么的平面图形称为相应立体图形的展开图。

  5.点,线,面,体

  ①图形是由点,线,面构成的。

  ②线与线相交得点,面与面相交得线。

  ③点动成线,线动成面,面动成体。

  二、直线、线段、射线

  1.线段:线段有两个端点。

  2.射线:将线段向一个方向无限延长就形成了射线。射线仅有一个端点。

  3.直线:将线段的两端无限延长就形成了直线。直线没有端点。

  4.两点确定一条直线:经过两点有一条直线,并且仅有一条直线。

  5.相交:两条直线有一个公共点时,称这两条直线相交。

  6.两条直线相交有一个公共点,这个公共点叫交点。

  7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

  8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)

  9.距离:连接两点间的线段的长度,叫做这两点的距离。

  三、角

  1.角:有公共端点的两条射线组成的图形叫做角。

  2.角的度量单位:度、分、秒。

  3.角的度量与表示:

  ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。

  4.角的比较:

  ①角也能够看成是由一条射线绕着他的端点旋转而成的。

#p#分页标题#e#

  ②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。

  ③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  ④工具:量角器、三角尺、经纬仪。

  5.余角和补角

  ①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。

  ②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。

  ③补角的性质:等角的补角相等

  ④余角的性质:等角的余角相等

  初一数学知识点总结 篇1

  正数和负数

  ⒈、正数和负数的概念

  负数:比0小的数正数:比0大的数0既不是正数,也不是负数

  注意:①字母a能够表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(假如出推断题为:带正号的数是正数,带负号的数是负数,这类说法是错误的,例如+a,—a就不能做出简单推断)

  ②正数有时也能够在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

  2、具有相反意义的量

  若正数表示某种意义的量,则负数能够表示具有与该正数相反意义的量,比如:

  零上8℃表示为:+8℃;零下8℃表示为:—8℃

  3、0表示的意义

  (1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

  (2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

  (3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

  有理数

  1、有理数的概念

  (1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

  (2)正分数和负分数统称为分数

  (3)正整数,0,负整数,正分数,负分数都能够写成分数的形式,这么的数称为有理数。

  理解:仅有能化成分数的数才是有理数。

  ①π是无限不循环小数,不能写成分数形式,不是有理数。

  ②有限小数和无限循环小数都可化成分数,都是有理数。

  ③整数也能化成分数,也是有理数

  注意:引入负数之后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

【简单学习网初一】 精品试学课 / 名师直播 / 优惠券 免费领取

注册
简单学习网简单学习网

简单学习网初一全科在线辅导,互动答疑,800讲免费课程!

免费试听